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The thermal ~o~~u~tivity of pure po~yato~i~ gases 
at moderate pressure? 
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Ah&act-Based on the binary collisions of molecules, the kinetic theory of pure gases is valid for all 
pressures the higher the temperature increases. The mechanism of relaxation in the molecular internal 
energy exchange and the peculiar behaviour of polar gases are empirically taken into account through the 

reduced Planck constant (the de Boer parameter) to give an expression of the thermaf ~nductivity. 

INTRODUCTION 

THE CHAPMAN-ENSKOG kinetic theory of dilute gases 
ignores the internal degrees of freedom of the 
molecules. Nevertheless it gives a good prediction of 
the viscosity of polyatomic gases through the Len- 
nard-Jones (for non-polar gases) or Stockmayer 
(polar gases) interaction potential [ 1, 21. This is poss- 
ible because viscosity is insensitive to the effects of 
internal degrees of freedom. On the other hand, the 
thermal conductivity of polyatomic gases, non-polar 
or polar, is not described satisfactorily. 

A monography with numerous references is given 
by Reid et al. [3]. Eucken [4] proposed the first attempt 
to patch up the basic theory and considered the ratio 
n&f/r&, where i is the thermal conductivity, M the 
molar mass, q the viscosity coefficient and C, the 
molar heat capacity at constant volume. That ratio, 
called the Eucken factor, is equal to 5/2 for 
monoatomic gases. To account for the effect of inter- 
nal degrees of freedom, the molar heat capacity is split 
in two terms, 

where C,, = (3/2)R is the translational heat capacity 
and C,,, = C,, - C,, is the internal heat capacity. Then 
one decomposition of the same type is implemented 
on the Eucken factor 

Eucken proposed keeping ftr = 5/2 and At = 1, 
whereby equation (1) reduces to 

This relationship, named the Eucken correla~jo~, 
which gives a very reasonable agreement with ex- 

7 Dedicated to Professor Dr.-Ing. Dr.-1ng.e.h. Ulrich 
Grigull. 

periments at low temperature, permits one to calcu- 
late the ‘low-temperature asymptotic conductivity’ 
of non-polar gases when the values of M, q and C, 
are known. 

The molecules of the gas exist in various internal 
quantum states. It was noticed by some scientists that 
the transport of internal energy must occur by a diffu- 
sional mechanism and that it would be better to put 
into equation (1) 

ftr = 5/2 and & = SC- ’ 

where the Schmidt number SC = q/‘pD is the ratio of 
the molecular momentum ~ffusi~ty (~/~~ to the self- 
diffusion coefficient (D). 

One way to verify this intuition by a theoretical 
approach is to consider each molecule with its excited 
internal energy state as one molecule of a separate 
chemical species and to assume that the transport of 
internal energy occurs by a mechanism suggested by 
chemical reaction into a mixture of chemical com- 
ponents 11, 51. Then 

= SC-‘+a(s-2Sc-‘)(R/C,). (3) 

Using another method from the general formulas for 
the transport properties in Wang Chang and Uhlen- 
beck’s form, Mason and Monchick [6] have obtained 
equation (3), which is named the mod$ed Eucken 

correlation. 
We notice that if SC = I, equation (3) is identical 

to equation (2). The numerical value of SC- ’ is near 
to 1.32 for gases and is nearly independent of tem- 
perature. 

Equation (3) is valid when the interchange of 
rotational and translational energy is negligible, that 
is the collisions are quasi-elastic (the translational 
motion is independent of the internal states). Equa- 
tion (3) is in very good accordance with experiments 
when the temperature is high for non-polar gases. 
Then it is possible to calculate the ‘high-temperature 
asymptotic thermal conductivity’ of non-polar gases. 

The measured value of the thermal conductivity of 
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NOMENCLATURE 

tin\ molar internal heat capacity i: energy parameter of the interaction 

G, molar translational heat capacity potential 

c, molar heat capacity at constant volume 

CC, = c’,,+ Cint) 1 
viscosity coefficient 
thermal conductivity 

D,,, diffusion coefficient for internal energy !i dipole moment 

f ,“t factor for internal heat capacity 7l constant in equations (6) and (7) 

.f;, corrective factor for polar gas 1z = 3.1416 
I? Planck constant rl molecular parachor (n = P/N) 
h" reduced Planck constant {or de Boer P density 

parameter) gr length parameter of the interaction 
k Boltzmann constant potential 
M molar mass x physical property 
nr mass of the molecule (m = M/N) fZ”.“‘* reduced integral of collision for 
N Avogadro constant viscosity and thermal conductivity. 
P parachor 

P pressure Superscripts 
R perfect gas constant * reduced relative to the (m, 6. E, k) system 
SC Schmidt number (for self-diffusion) c1 relative to the perfect gas. 
T temperature. 

Subscripts 
Greek symbols E Eucken correlation 

B pressure coefficient of thermal in1 internal 
conductivity mE nlodified Eucken correlations 

S polarity parameter tr tr~~nslational. 

one non-polar gas lies between the two values obtain- 
able by equations (2) and (3). Moreover, these equa- 
tions indicate that the Eucken factor should always 
decrease with increasing temperature (with the growth 
of the heat capacity), but some ex~r~lnents indicate an 
opposite behaviour in a certain range of temperatures 
the place of which, in the absolute temperature scale. 
depends on the studied gas. 

In order to obtain theoretically a Eucken factor 
closer to reality, Mason and Monchick [6] consider 
that collisions are inelastic, with a relaxation time. 
They give relationships for fir and f;,, showing that 
.& decreases and Xr increases when inelastic collisions 
occur. Neglecting the cont~bution of the vibrational 
energy, it is necessary to handle one new parameter : 
the collision number .Z,*, which is the number of 
colhsions required to interchange a quantum of 
rotational energy with translational energy. It is 
difficult to find its value {which is temperature depen- 
dent) because experiments are tricky and no theory is 
well developed. 

In al1 that has been written above, we have not 
considered a polar gas, the behaviour of which is 

markedly different. The thermal conductivity, anom- 
alously low in relation to the viscosity, is due to a 

resonant exchange of rotational energy which is prob- 
able on grazing collision. This type of collision with 
exchange is equivalent to a head-on collision without 
exchange so far as the transport of the rotational 
quantum is concerned 163. Thus, the di~usion co- 

efficient for internal energy is smaller than the self- 
diffusion, and Brokav [7] gives an empirical cor- 
rection 

with 

c( = a(300/T)‘” 

Values of tl and iz are given for highly polar gases: 
0.016 < n c: 0.93, 1.6 < n < 2.1. 

The purpose of the present paper is to develop a 
simple empirical approach based on the principle of 
corresponding states. After van der Waals (1873) 
many scientists used this principle for various 
problems and especially to predict thermodynamic 
properties fl, 3, 81. For the topic in question with 
transport properties, this principle may be applied 
with molecular parameters. Considering the case 
of noble gases, de Boer and Micheis 191 introduced 
for the first time (1938) the dimensionless parameter 
which is the reduced Pianck constant (sometimes 
catled the de Boer parameter f I]) 

where h is the Planck constant, m the molecular mass, 
and c and E the length and energy parameters in the 
molecuiar interaction potential. This parameter, 
which has a characteristic value for each gas (the 
greatest value being 2.64 for helium). appears as the 
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Broglie wavelength, divided by g, of the relative 
motion of two molecules with relative kinetic energy 
E [9, 111. De Boer showed for the noble gases how 
evenly the reduced molecular volume and the internal 
energy at the absolute zero vary, and also the reduced 
Debye temperature when each propert$is plotted 
versus h* [lo]. 

Despite the ignorance of h* in the application of 
the principle of the corresponding states, the exper- 
imental data concerning the viscosity of gases are well 
correlated [ 12, 131, but no such success is achieved for 
the thermal conductivity. The explanation lies in the 
fact that viscosity is insensitive to the effect of internal 
degrees of freedom. In some papers it is written 
erroneously that because h* accounts for quantum 
effects, this parameter may be omitted for non-quantic 
gases : this depends on the type of property studied. 
Assuming that h* has a central place in the internal 
energy of the molecule even for the ‘classical’ gases 
(non-quantic gases), we will point out that the thermal 
conductivity is a function of the reduced Planck con- 
stant. 

THE PRINCIPLE OF CORRESPONDING 

STATES 

The idea of corresponding states lies in the dimen- 
sional analysis. Any thermophysical property of one 
gas depends on two independent state variables 
(among three), the pressure p and the absolute tem- 
perature T, and also on a necessary and sufficient 
number of independent parameters which are charac- 
teristic of the chemical nature of the gas. In order to 
obtain dimensionless forms, the choice of the ref- 
erence is free between the properties at the critical 
point or the intrinsic molecular properties. Using 
the last method, any transport property x is a function 
of the molecular mass m, the two parameters of inter- 
action e and E, the Boltzmann constant k, which is the 
molecular energy scale, and the Planck constant h, 
which is the scale of quantic mechanisms. For polar 
gases the dipole moment p must be added. Then in 
the general case 

x = X(P, T m, 6, E, k, k 14 (4) 

In this four-dimensional problem (length, mass, time, 
temperature), four parameters are kept for reference : 
m, a, E, k. The reduced form of equation (4) is 

x* = x*(P*, T*, h*, F*), (5) 

where 

p* = pa’/& T* = kTjs 

h* = h/a(ma) ‘12 p* = p(a3a)) ‘j2. 

When the attention is focussed on the viscosity or the 
thermal conductivity, x* is respectively identified with 

q* = qa2(me)-“2 and 1* = ia2k-‘(m/a)“‘. 

One notes here that it would be possible in equation 

(4) to replace h by a different parameter like the 
molecular parachor, which is the parachor P divided 
by the Avogadro constant N; then h* would be 
replacedbyx* = P(N0.25a2.5)-’ [14, 15].Eachofthe 
two cases describe the state of the gas in a coherent 
(uniqueness) manner ; there exists necessarily a 
relationship between h* and z* (through p* for polar 
gases). However, h* is preferred here because it is 
closer to the physical model of internal energy. 

For dilute gases, the reduced pressurep* is cancelled 
in equation (5) and considering monoatomic gases, 
the Chapman-Enskog theory leads to 

5J? __- 
n* = 16& @2,2)* 

and 

(6) 

where R(2S2)* is a reduced collision integral and is a 
function of T*. 

For non-polyatomic gases, equation (6) is appli- 
cable without alteration. Because the viscosity is 
insensitive to the internal degrees of freedom, h* is 
not active. For polar gases we must consider in 
equation (6) the collision integral n(2*2)* (T*, p*). In 
place of p*, Monchick and Mason [2] have given 
numerical tables of Q(2,2)* (T, 6) where 6 = (~*)~/2. 
Brokav [7] has proposed an analytical expression 
which is easy to handle. 

Applying equation (5) to the Eucken factor, which 
is dimensionless, one obtains the general form for 
dilute gases 

$ = f(T*, h*, 6). 
” 

Before further discussion about the thermal con- 
ductivity, we have to examine the question : it is gen- 
erally admitted that the formulae of the kinetic theory 
are valid for gases at atmospheric pressure, but what 
is the upper limit of pressure? 

THE KINETIC THEORY AT MODERATE 

PRESSURE 

The Chapman-Enskog theory of gases is based on 
binary collisions of molecules. According to the 
assumption of a dilute gas, the viscosity is pressure- 
independent at any temperature. In order to evaluate 
the higher limit of pressure compatible with binary 
collision, the paper of Trappeniers et al. [ 131 is useful. 
Keeping numerous precise data on the viscosity of 
noble gases up to high densities, these authors give an 
empirical series expansion in terms of the reduced 
density p* and reduced temperature T*. One can use 
this relationship for low density, noting that for dilute 
gases p* = p*/T*. It is possible to estimate the upper 
pressure limit so that the viscosity increase is less than 



602 J. Gossr 

0.5% (that is, the level ofuncertainty of the best data). 
This requirement is fulfilled if 

T 
p < 6.4x 10“ -R”-“* 

03 
for 0.45 < T* < I5 (9) 

with g in A (0. I nm), T in K and p in Pa (N m ‘). 

Taking into account the insensitivity of viscosity 
to the internal degrees of freedom, this condition is 
certainly valid for non-polar gases. This means that 
for nitrogen at 300 K, equation (6) is applicable up to 
3.4 bars; at 1000 K, the upper limit is 9 bars. 

Based on the empirical relationship given for polar 
gases at low density [16], several checks show that (9) 
is still valid in spite of the peculiar behaviour of these 
gases. For example, the viscosity of ammonia at 300 

K can be calculated by the kinetic theory for pressure 
up to 6.5 bars. 

It can be assumed that the conclusion obtained with 
viscosity is valid for thermal conductivity of mono- 
atomic gases. For polyatomic gases, the variation 
in thermal conductivity with pressure is stronger due 
to the variation in internal heat capacity. The ana- 

lysis of the problem is complicated by the fact that 
the accuracy of data or conductivity is about & 1% 
in the better experiments. We will see later that it is 
possible to calculate the thermal conductivity inside 
the pressure range defined by (9) where the binary 
collisions are predominant. 

One notices that in practice the range of pressure 
where the theory is applicable, increases with tcm- 

peraturc. 

AN EMPIRICAL FORMULATION 

Touloukian et al. [ 177191 have given precious infor- 
mation covering pure gases. They have reviewed and 
analysed all the data and ‘recommended reference 
values’ are presented as the most probable. Based on 

that work we are led to conclude that the Eucken 
factor is known with a margin of error estimated at 
i 6% in usual cases. The most important uncertainty 
weighs on thermal conductivity and heat capacity 
values and this explains the fact why some Euckcn 
factors, become greater than the values given by equa- 
tion (3) when the temperature increases. 

Consequently we will neglect the translational: 

rotational interchange in assuming that : (i) .f;, is equal 
to 5.2 as in equations (2) and (3) ; (ii) the variation of 
the relaxation time with temperature is solely included 

in .L 

.f;,, = 1 + (SC ’ - 1) exp (- lOh*/jY*). (10) 

Through this expression ,& varies from unity at weak 
temperature (no internal interchange) up to Sr ’ at 
high temperature (very fast interchange). 

The de Boer parameter is practically 

h* = 43.764/(r&(E/k) (11) 

with 0 in A, s/k in K and M in g mol ‘. 

As was noted in the Introduction, the thermal con- 
ductivitics of polar gases are low in relation to the 
viscosity. In order to take this fact into account, we 
introduce a corrective factor 

,fr = exp (- 1 lh*‘fi.‘T”) (12) 

which multiplies f;,,, so that equation (3) becomes 

this relationship being associated with equations (IO) 
and (12). 

Table I presents some cases selected from Table IO- 
2 of ref. [3], in order to allow an easy comparison with 

other types of empirical evaluation considered in that 
reference. The influence of the chosen property values 
is noticeable through recommended values added in 
the table. We can conclude that the calculated Eucken 
factor is within the margin of experimental uncer- 
tainty. The constants in equations (10) and (12) were 

not selected by a severe method of optimization and 
they can be improved. Nevertheless, the deviations 
are still statistically equal to those ofthe more accurate 

method recommended by Reid et cd. [3]. 
Based on this analysis, the thermal conductivity ol 

gases is evaluated inside the domain where the kinetic 
theory is applicable (condition (9)) 

At weak density, C, is equal to C,p for perfect gases 
and C,“/R = (C;:/R) - 1. At moderate pressure we 

take into account the influence of pressure. 

THE VARIATION OF CONDUCTIVITY WITH 

PRESSURE 

It is possible to use equation (14) when the pressure 
is greater than one atmosphere. The increase of ther- 
mal conductivity is due to the increase of the heat 
capacity with pressure. At constant temperature. this 
increase can be characterized by the pressure 
coefficicn 1 

I di. 
/)J= _= 

i,, dl, 
; ;; .r,.r;,,, d”, ; 

i) 

where i, is the conductivity at weak density. Then. 
for a moderate pressure, the evaluation of i and /I’ 
requires the use of an equation of state in order to 
find the C, value or its derivative. A survey of numeri- 
cal tables [20] shows that for a given gas at constant 
temperature d/dp(C,,/R) is positive and decreases 
when the fixed temperature grows. This conclusion is 
compatible with the observations on b made by Vines 
and Bennett [21]. Comparison between calculated and 
experimental values of /I is satisfying if it is noticed 
that the experimental approach of 1) values can be in 
error by at least f50% [21]. The coefficient /< varies 
greatly from one gas to another and is about 0.5% pet 
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Table 1. Comparison between calculated and experimental values of the Eucken factor of a pure gas at 1 bar (see Table 
IO-2 in ref. [3]) 

Percent error? 

Component 
a Eucken Mod. Present 

(& (10-3Wm-r K-i) (10-6$srn-2f (Jmol”K-‘) factor Eucken Euck. work 

Acetylene 198 
273 

373 

Benzene 353 

433 

n-Butane 273 

373 

n-Hexane 373 
433 

Acetone 353 

393 
451 

Ammonia 

Sulphur dioxide 

213 

273 

273 

11.8 
IX.7 
18.51: 
29.s 
29.1 - 

14.6 
14.67 -- 
22.6 
23.59 -- 

13.5 
13.5 
24% 
23.4 - 

20.1 
27.2 
27.16 

15.7 
15.74 
19.4 
24.7 
25.9 

9 33 _- 

7.90 
9.20 
9.42 __ 

9.0 
8.97 

10.0 
11.45 
11.6 

16.5 7.32 
16.47 7.306 
in 9.06 

8.29 11.7 

7.01 
9.55 
9.45 

12.61 
12.65 

26.8 
33.7 
33.5 
40.4 

9.0 
8 99 1_ 

10.95 
11.0 

40.4 -- 

90.4 
90.56 

114 
120.8 

6.88 84.6 
6.93 -. 
9.45 

83.3 
I.@-- 
109.3 --- 

163 I.34 
186 1.37 
187.5 1.32 

77.9 
77 3 ..Z- 
84.2 
96. I 

96 

25.4 
25.4 
26.7 

1.30 
1.32 
1.34 
1.30 
1.35 - 
1.51 
1.51 
iZ 

30.6 

1.64 
1.51 
1 52 ; 
1.52 
1.51 

I .40 
1.407 
1.41 
1.38 

1.35 
136 ; 
I.38 
1.33 

1.48 

3.8 14 
2.8 16 

-4.0 10 

-14 

-18 

5.8 

2.5 

-9.4 

-15 

11 

5.7 

-1-f 
-20 

4.8 
2.1 

-4.7 I6 

-8.7 12 
-8.4 13 

15 26 

10 21 

8.6 21 

5.8 
6.6 
5.9 
1.0 
1.6 

-1.8 
-2.2 
-5.0 
- I.9 

0 
0.7 

-4.3 
-0.7 

-2.1 
-4.4 
-0.7 

2.9 
I.4 

-0.3 
1.5 

-1.9 

2.7 
2.7 
0.5 

-3.2 

t Percent error = [(talc. -exp.)/exp.] x 100 ; SC- ’ = I .32. 
$ R~o~ended values are ~derlin~. 

bar, depending on the temperature and the chemical 
nature. 

Equation (14) is then usable for moderate pressure 
delimited by condition (9), that is in the range of 
pressure where the viscosity coefficient is practicaliy 
constant (chiefly binary collisions). The latter prop- 
erty is obtained by equation (6), which is written here 
in the classical form 

JNT 
y = 2.6693 x iO-6xF~ (15) 

where~isinPl(orNsm-2),~ingmoI-1,~inK 

and Q in A (or 0.1 nm). 
The margin of error on the calculated conduc~vity 

value (equation (14)) is *2%. 

CONCLUSION 

Through the analysis of the variation of viscosity 
with pressure at constant temperature, a range of 
pressure (reaching several atmospheres) is defined in 
which the kinetic theory is applicable. When recom- 
mended values replace rough data of physical prop- 
erties the variations of Eucken factor and temper- 
ature are opposite. Based on these two critical 
comments, the intensity of internal energy exchange is 

empirically associated to temperature, reduced Planck 
constant and reduced dipole moment in order to 
obtain an improved expression on the thermal con- 
ductivity of polyatomic gases. 

~Ck~owle~e~nf-This paper is dedicated to Professor U. 
Grigull in recognition of his outstanding action among mem- 
bers of the internal community in heat and mass transfer. 
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APPENDIX 

M 
(g mol- ‘) (r (A) c/k (K) 

Acetylene 
Benzene 
n-Butane 
n-Hexane 
Acetone 
Ammonia 
Sulphur 

dioxide 

26.04 4.033 231.3 0.1398 0 
78.11 5.349 412.3 0.04559 0 
58.12 4.687 531.4 0.05313 0 
86.18 5.949 399.3 0.03966 0 
58.08 4.50 549 0.05446 0.67 
17.03 2.90 464 0.1698 0.69 
64.06 3.49 343 0.08459 0.2 1 

h* ,i 

LA CONDUCTIVITE THERMIQUE DES GAZ PURS POLYATOMIQUES AUX 
PRESSIONS MODEREES 

R&um&Basee sur I’hypothise de collision binaire des molecules, la theorie cinetique des gaz purs est 
valable jusqu’a des pressions d’autant plus &&es que la temperature croit. Le mecanisme de relaxation 
dans l’interchange des energies internes moleculaires et le comportement particulier des gaz polaires sont 
pris en compte empiriquement a l’aide de la constante de Planck reduite (ou parametre de De Boer) pour 

exprimer la conductivite thermique. 

DIE WARMELEITFAHIGKEIT REINER MEHRATOMIGER GASE BE1 MITTLEREN 
DRUCKEN 

Zusammenfassung-Die kinetische Theorie reiner Gase, die auf binlren Kollisionen von Molekiilen beruht, 
gilt ftir urn so hohere Drticke je hoher die Temperatur ist. Der Mechanismus der Relaxation beim 
molekularen Austausch innerer Energie und das spezielle Verhalten polarer Gase werden empirisch mit 
Hilfe der normierten Planck’schen Konstanten (dem de Boer Parameter) berticksichtigt. Damit ergibt sich 

ein Ausdruck fur die Wlnneleitfahigkeit. 

TEI-IJIOI-IPOBO~HOCTb YHCTbIX MHOI-OATOMHbIX FA30B I-IPH YMEPEHHOM 
&4BJIEHUR 

Amiura~Ihuewwctcan Teopmi YHCT~IX ra30n, ocriouatirian na napnbrx coynapeminx Monexyn, 
cnpane~sano naanemiii, ~~oT~~TB~I~~xc~M~~MB~IcoK~MT~M~~~~T~~~M. B BbIpaxeiiHHAJMTen- 
nonpoeoArmcra MexaHBM pemncau~n rqi o6ene BiiypH~d 3Heprmr Moaeryn H nononenrie nonnp- 
rrbrx ra30~ smmpmec~~ ym~bmam~cn c no~ouum npHnez4etmoti ~0~crauTb1 IInarura (napardeTpa ne 

Wpa). 


